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Native lagomorphs prolong legacy effects limiting
restoration of imperiled shrub-steppe communities
Kirk W. Davies1,2 , Jon D. Bates1, Lauren Svejcar1

Over the last+150 years, increases in woody vegetation in drylands and associated declines in herbaceous vegetation have led
to widespread interest in reversing this trend. However, the effects of native, noncharismatic herbivores, such as lagomorphs,
on these efforts are largely unknown. For 11 years post-treatment, we quantified the effects of native lagomorphs on restoration
efforts in sagebrush (Artemisia L.) communities exhibiting legacy effects of past management, including depleted understories
and overabundant sagebrush. Reducing sagebrush and seeding perennial grasses was necessary to attain substantial increases in
large perennial grass cover and density, but this outcome was realized only with lagomorph exclusion. A small native bunchgrass
and perennial forb cover and density increased in all treatments with lagomorph exclusion. This suggests that lagomorphs contribute
to the persistence of a depleted understory in areaswith increasedwoody vegetation. In areaswhere sagebrushwas reduced, the cover
anddensity of sagebrushwas greaterwith lagomorph exclusion. This suggests that lagomorphs could hinder sagebrush recovery after
disturbances that reduce or eliminate sagebrush. Lagomorph herbivory had a substantial effect on vegetation dynamics and affected
the outcome of restoration efforts in these dryland systems. This could reduce livestock forage and alter habitat of wildlife species,
potentially affecting their conservation. Lagomorphs and other noncharismatic, native herbivores may facilitate the persistence of
depleted understories in areas where woody plants have increased. Results of this study suggests that the potential effects of lago-
morph and other native herbivores should be considered and addressed in management, restoration, and conservation plans.
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Implications for Practice

• Native lagomorphs contribute to the persistence of shrub
dominance and depleted understories prolonging the
effects of prior mismanagement.

• Native lagomorphs can hinder passive and active restora-
tion efforts, and subsequently, their effects may need to
be mediated to increase restoration success.

• Potential effects of lagomorphs and other native herbi-
vores need to be considered in management, restoration,
and conservation plans.

Introduction

Ecological legacy effects in arid-land systems from prior misman-
agement are often a restoration challenge (Monger et al. 2015).
Simply removing or limiting the effects of the original source of
degradation (passive restoration) may not be sufficient to facilitate
recovery. Though active restoration is likely needed, it may fail as
other barriers to recovery may limit success and prolong legacy
effects. This may be a particular issue where woody plants have
increased and legacy effects are long-lived even after woody veg-
etation control (McClaran et al. 2008; Throop & Archer 2008),
especially if other barriers, such as herbivores, prolong the effects
of prior mismanagement.

Woody plants have proliferated at the expense of perennial her-
baceous vegetation over the past +150 years in many drylands
(Van Auken 2009; Archer et al. 2011; Sala & Maestre 2014).

Woody plant proliferation with associated declines in herbaceous
vegetation can increase soil erosion risk (Schlesinger et al. 1999;
Ritchie et al. 2005; Pierson et al. 2007), decrease ecosystem ser-
vices (Ding et al. 2020), and reduce the economic value of the
land for livestock production (Scholes & Archer 1997; Archer
et al. 2011). The adverse effects of increases in woody vegetation
and affiliated decreases in herbaceous vegetation have resulted in
widespread interest in converting recently developed woodlands
and shrublands back to savannahs, grassland, and shrub-steppe
communities. Efforts to increase herbaceous vegetation and
reduce woody vegetation are often accomplished with mechani-
cal treatments, prescribed fire, herbicide applications, or combina-
tions thereof (Archer et al. 2011). However, control of woody
plants alone does not necessarily lead to autogenic recovery of
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herbaceous vegetation (Archer et al. 2011; Archer & Predick
2014). When desired plant species or functional groups are no
longer abundant or the woody vegetation treatment reduces these
desired plants, undesirable herbaceous vegetation may increase
(Johnson & Fulbright 2008; Davies et al. 2012). Seeding peren-
nial herbaceous vegetation after woody plant reduction may be
necessary to achieve desired outcomes, though successful out-
comes are far from certain. Failure of restoration projects is all
too common in drylands as multiple potential barriers to success
must be overcome (United States Government Accountability
Office 2006; Svejcar et al. 2017). Abiotic barriers, such as low soil
moisture, are often attributed to seedling mortality, but biotic bar-
riers, such as herbivory, may play an outsized role in herbaceous
plant establishment in woody plant-encroached ecosystems.

Herbivores can alter restoration trajectories by grazing and
browsing residual and new vegetation (Ruzicka et al. 2010;
Gornish & Santos 2016). Grazing and browsing may have direct
(e.g. mortality of seedlings) and indirect (e.g. altering competi-
tion, impacts of soil moisture) effects on desirable plant recov-
ery. Because of the potential for herbivory to limit recovery,
non-native herbivores (horses, cattle, sheep) are often excluded
after restoration actions. Native ungulates may also be excluded
from restoration projects at times (e.g. Averett et al. 2017), but
small native herbivores often have unrestricted access. Native
herbivores may limit restoration success by preventing desired
vegetation establishment (Augustine & Frelich 1998; Aber-
crombie et al. 2019; Guzm�an et al. 2021). However, effects of
some other native herbivores, especially noncharismatic species
such as lagomorphs, are lesser known and often overlooked in
many dryland plant communities (Gibbens et al. 1993). Lago-
morphs are well-known regulators of both productivity and
plant community composition in temperate grasslands
(e.g. Crawley 1990; Edwards & Crawley 1999). The effects of
lagomorphs may be particularly important in arid and semi-arid
rangelands that have low populations of ungulates because they
may be the primary native herbivore (Abercrombie et al. 2019).
Thus, these unobtrusive but ubiquitous herbivores may play an
outsized role in determining directionality and persistence of
plant community composition. Understanding the effects of
lagomorphs on the persistence of woody plant encroachment
and on efforts to reverse the increase in woody plants and to pro-
mote perennial herbaceous vegetation is needed to guide and
improve conservation and restoration.

In western North America,Wyoming big sagebrush (Artemisia
tridentata ssp. wyomingensis [Beetle & A. Young] S.L. Welsh)
communities with a depleted understory and overabundant sage-
brush overstory are a particularly challenging management
dilemma because of the legacy effects of prior mismanagement.
These communities developed because of historic heavy,
repeated grazing by livestock during the growing season depleted
the understory; however, cessation of livestock grazing does not
restore the understory as recovery is likely limited by high abun-
dance of sagebrush (Davies et al. 2016, 2021b). Overabundant
sagebrush can be reduced with mechanical, herbicide, or pre-
scribed fire treatments, but increases in perennial herbaceous veg-
etation are often not achieved as a matter of course (Davies et al.
2011; Beck et al. 2012). Instead, highly flammable, exotic annual

grasses may increase substantially with sagebrush reduction, put-
ting the plant community at risk of frequent fires and further deg-
radation (Davies et al. 2012).

Seeding after sagebrush reduction can increase perennial grasses,
but increases may be limited, and exotic annual grasses may still
increase substantially (Davies & Bates 2014; Davies et al. 2021b).
Lagomorphs have limited woody plant restoration efforts (Holl &
Quiros-Nietzen 1999; McAdoo et al. 2013; Forsyth et al. 2015);
thus, they could also be limiting herbaceous vegetation recovery.
In Arizona, lagomorphs were significant consumers of herbaceous
vegetation in shrub-encroached arid grasslands, potentially acting
as a biofeedback contributing to the persistence of shrubs
(Abercrombie et al. 2019). Similarly, prairie dogs shaped vegetation
structure in sagebrush grasslands inWyoming (Connell et al. 2018).
Thus, lagomorphs likely impact efforts to restore perennial under-
stories in degraded sagebrush communities.

The purpose of this study was to investigate the effects of lago-
morphs on management legacies and restoration efforts. Specifi-
cally, we evaluated the effects of lagomorph herbivory on natural
(passive) recovery and on active restoration efforts to increase
perennial herbaceous vegetation in Wyoming big sagebrush com-
munities with depleted understories and overabundant sagebrush.
To accomplish this task, we investigated the effects of lagomorph
herbivory on sagebrush communities with depleted understories
that received passive restoration and active restoration treatments
(mechanical reduction of sagebrush with and without seeding of
perennial grasses). We hypothesized that (1) lagomorphs maintain
shrub dominance and limit understory vegetation through herbiv-
ory and (2) though reducing sagebrush and seeding perennial
bunchgrasses would be necessary to increase bunchgrass cover
and density, exclusion of lagomorphs is also necessary to realize
the benefits of these treatments.

Methods

Study Area

The study was conducted in Wyoming big sagebrush communi-
ties with depleted understories in southeast Oregon 40–50 km
southwest of Burns, Oregon, U.S.A. Common perennial grasses
at the study sites included bluebunch wheatgrass (Pseudoroeg-
neria spicata [Pursh] A. Löve), Thurber’s needlegrass (Ach-
natherum thurberianum [Piper] Barkworth), squirreltail (Elymus
elymoides [Raf.] Swezey), and Sandberg bluegrass (Poa secunda
J. Presl). Dominant perennial bunchgrasses would have been
bluebunch wheatgrass and Thurber’s needlegrass if these com-
munities were intact (NRCS 2013). Exotic annual grasses were
present across the study area, but their cover was low prior to
treatment. The understory was considered depleted because
perennial herbaceous cover and density were low. Prior to treat-
ment, Sandberg bluegrass, large perennial bunchgrass and peren-
nial forb foliar cover were <2, <2, and <1%, respectively. These
cover values are substantially less than those found in relatively
intact Wyoming big sagebrush communities (Davies et al. 2006;
Davies & Bates 2010; Bates & Davies 2019). Sagebrush cover
was 15% prior to treatment, which is 20–50% greater than the
average cover in intact Wyoming big sagebrush communities
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(Davies et al. 2006; Davies & Bates 2010), suggesting that sage-
brush may be limiting herbaceous vegetation. Study sites were on
locations classified as a Loamy 10-12PZ (R023XY212OR) eco-
logical site (NRCS 2013) and separated by approximately
15 km. Elevations ranged from 1,263 to 1,350 m and slopes were
generally flat across the study sites. Soils had a physical crust at
the surface and were loamy, well-drained, and moderately deep.
The local climate consists of cool, wet winters and hot, dry sum-
mers. Average annual (1981–2010) precipitation was 244 mm
(PRISM 2020). Study sites were grazed by livestock prior to
study initiation, but livestock (cattle and feral horses) were
excluded for the duration of the experiment.

Experimental Design and Measurements

A randomized complete block design with study site (n = 2) as
the blocking variable was utilized in this study. Each block con-
sisted of six 30 � 50–m plots with a 2-m buffer between plots.
Vegetation treatments were replicated in two 30 � 50–m plots
in each block (3 treatments � 2 plot replicates = 6 plots per
block) and were: (1) untreated control, (2) sagebrush reduced
(unseeded sagebrush reduction), and (3) sagebrush reduced with
perennial grasses seeded (seeded sagebrush reduction). In each
block, one vegetation treatment replicate had lagomorphs
excluded and the other did not. Thus, each factorial combination
of lagomorph herbivory and vegetation treatment occurred once
at each block. Black-tailed jackrabbits (Lepus californicus), a
native species, were the only lagomorph observed at the study
sites. Mountain cottontails (Sylvilagus nuttallii), a native spe-
cies, also occupy the study area, but were not observed at the
study sites. Sagebrush was reduced by mowing at a 20 cm
height in September of 2008 with a Schulte XH 1500 rotary
cutter (Schulte Equipment Co., Englefield, Saskatchewan,
Canada). In seeded sagebrush reduction plots, seeding was
applied after mowing with a Laird Rangeland Drill (Laird
Welding & Manufacturing Works, Merced, CA). The grass
seed mix consisted of crested wheatgrass (Agropyron deser-
torum [Fisch.] Schult.) and Siberian wheatgrass (Agropyron
fragile ssp. sibericum [Roth] P. Candargy) with each seeded
at 5.6 kg pure live seed (PLS)/ha. These non-native bunchgrasses
were selected for seeding instead of native bunchgrasses to test if
lagomorphs affected restoration actions because native bunch-
grass species are less likely to establish (Robertson et al. 1966;
Hull 1974; Wood et al. 1982). Thus, seeding these non-native
bunchgrasses increase the likelihood that we could investigate if
lagomorphs affect seeded bunchgrass establishment. These
species can also be used in efforts to restore ecosystem func-
tion, though not native composition. Lagomorphs were
excluded using 61 cm tall chicken wire fence with 2.54 cm
mesh size erected around exclusion plots. No lagomorphs were
observed in the lagomorph exclusion treatment areas for the
duration of the study, while lagomorphs were commonly
observed in the other treatment areas. Other wildlife species
(mule deer, pronghorn, elk), though not abundant, were not
excluded from study plots.

Vegetation cover and density were measured in June for
11 years (2009–2019). Herbaceous canopy cover by species

was visually estimated in 40 � 50–cm quadrats located at 3-m
intervals (3 through 45 m) along four parallel 50-m transects
spaced 5m apart in each treatment plot (15 quadrats per transect,
60 quadrats per plot). Quadrats had markings dividing them into
5, 10, 25, and 50% segments to improve visual estimates of
cover. Herbaceous density was measured by species by counting
all perennial plants rooted inside the 40 � 50–cm quadrats and
all annual plants rooted in a permanently marked 10% segment
of the 40 � 50–cm quadrats. Sagebrush cover was measured
using the line intercept method on each of the 50-m transects.
Sagebrush density was measured by counting all individual
sagebrush plants rooted in 2 � 50–m belt transects positioned
over each of the 50-m transects.

Statistical Analyses

We used repeated measures analysis of variance using the
mixed model procedure (ProcMixed) with year as the repeated
variable in SAS version 9.4 (SAS Institute Inc., Cary, NC,
U.S.A.) to evaluate vegetation treatment and lagomorph
herbivory effects. Vegetation treatment and lagomorph her-
bivory were considered fixed effects in analyses. Block
and block-by-vegetation treatment interactions were treated
as random variables in models. The vegetation treatment-
lagomorph herbivory interaction was included in all models,
but only reported when significant. Other two-way and three-
way interactions were included in the error term to improve
sensitivity of analyses. The appropriate covariance structure
was determined for each model using the Akaike’s informa-
tion criterion (Littell et al. 1996). Herbaceous vegetation was
grouped into five categories for analyses: perennial bunch-
grasses (excluding Sandberg bluegrass), Sandberg bluegrass,
annual grasses, perennial forbs, and annual forbs. Sandberg
bluegrass was analyzed independent of the other bunchgrasses
because it is smaller statured, develops earlier, and often
responds differently to grazing and fire (McLean & Tisdale
1972; Yensen et al. 1992; Davies et al. 2021a). The annual
grass group was solely comprised of non-native species,
primarily cheatgrass (Bromus tectorum L.). The perennial
forb group was solely composed of native species. The annual
forb group was largely consisted of non-native species (>80%
of total cover and density). In unseeded treatments, the peren-
nial bunchgrass group was solely composed of native species.
Statistical significance was set at p ≤ 0.05 and means were
reported with standard errors (mean � SE).

Results

Cover

The response of perennial bunchgrass cover to vegetation treat-
ment was influenced by lagomorph herbivory (Table S1; Fig.
1A; p < 0.001). At the conclusion of the study in seeded and
unseeded sagebrush reduction treatments, perennial
bunchgrass cover was 15- and 2-fold greater in areas where
lagomorphs were excluded, respectively. Seeding perennial
bunchgrasses after sagebrush reduction substantially increased
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perennial bunchgrass cover when lagomorphs were excluded.
Perennial bunchgrass cover generally increased with time
(p < 0.001). Sandberg bluegrass cover did not vary among
vegetation treatments (Fig. 1B; p = 0.181). Sandberg

bluegrass cover was less with lagomorph herbivory
(p < 0.001) and generally increased with time (p < 0.001),
especially in areas where lagomorphs were excluded. The
response of annual grass cover to treatment varied by
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Figure 1. (A) Perennial bunchgrass (excluding Sandberg bluegrass), (B) Sandberg bluegrass, and (C) exotic annual grass cover (mean � SE) in sagebrush
reduction treatments with (NS-H) and without (NS-NH) lagomorph herbivory, untreated control with (C-H) and without (C-NH) lagomorph herbivory, and
sagebrush reduction treatments followed with perennial bunchgrass seeding with (S-H) and without (S-NH) lagomorph herbivory from 2009 to 2019. Sagebrush
reduction and seeding were implemented in the fall of 2008.
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lagomorph herbivory (Fig. 1C; p < 0.001). Annual grass
cover was greater without herbivory in the untreated control
and the unseeded sagebrush reduction treatment, but was

greater with herbivory in the seeded sagebrush reduction treat-
ment. Annual grass cover varied among years (p < 0.001).
Perennial forb cover did not vary among vegetation treatments

C
ov

er
 (%

)

0

2

4

6

NS-H
NS-NH
C-H
C-NH
S-H
S-NH

(A) Perennial forb

C
ov

er
 (%

)

0

10

20

30

(B) Annual forb

Year
20

09
20

10
20

11
20

12
20

13
20

14
20

15
20

16
20

17
20

18
20

19

C
ov

er
 (%

)

0

5

10

15

20

25

(C) Sagebrush

Figure 2. (A) Perennial forb, (B) annual forb, and (C) sagebrush cover (mean � SE) in sagebrush reduction treatments with (NS-H) and without (NS-NH) lagomorph
herbivory, untreated control (C-H)with andwithout (C-NH) lagomorph herbivory, and sagebrush reduction treatments followedwith perennial bunchgrass seedingwith
(S-H) and without (S-NH) lagomorph herbivory from 2009 to 2019. Sagebrush reduction and seeding were implemented in the fall of 2008.
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(Fig. 2A; p = 0.523), but decreased with lagomorph herbiv-
ory (p < 0.001) and varied among years (p < 0.001). The
response of annual forb cover to vegetation treatment was
influenced by lagomorph herbivory (Fig. 2B; p = 0.003).

Annual forb cover was greater with herbivory in all vegeta-
tion treatments, but the difference between herbivory and
herbivory excluded was most pronounced in the seeded
sagebrush removal treatment and least in the untreated
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Figure 3. (A) Perennial bunchgrass (excluding Sandberg bluegrass), (B) Sandberg bluegrass, and (C) exotic annual grass density (mean � SE) in sagebrush
reduction treatments with (NS-H) and without (NS-NH) lagomorph herbivory, untreated control (C-H) with and without (C-NH) lagomorph herbivory, and
sagebrush reduction treatments followed with perennial bunchgrass seeding with (S-H) and without (S-NH) lagomorph herbivory from 2009 to 2019. Sagebrush
reduction and seeding were implemented in the fall of 2008.
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control. Annual forb cover varied among years, but no clear
pattern emerged (p < 0.001). The response of sagebrush
cover to treatment varied by lagomorph herbivory (Fig.
2C; p < 0.001). Sagebrush cover was generally similar in

the untreated control with and without herbivory, but was
less with herbivory in seeded and unseeded sagebrush reduc-
tion treatments. Sagebrush cover generally increased with
time (p = 0.004).
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Figure 4. (A) Perennial forb, (B) annual forb, and (C) sagebrush density (mean � SE) in sagebrush reduction treatments with (NS-H) andwithout (NS-NH) lagomorph
herbivory, untreated control (C-H)with andwithout (C-NH) lagomorph herbivory, and sagebrush reduction treatments followedwith perennial bunchgrass seedingwith
(S-H) and without (S-NH) lagomorph herbivory from 2009 to 2019. Sagebrush reduction and seeding were implemented in the fall of 2008.
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Density

The response of perennial bunchgrass density to vegetation
treatment was influenced by lagomorph herbivory (Table S2;
Fig. 3A; p < 0.001) and year (p = 0.002). Perennial bunchgrass
density was generally not influenced by herbivory in the
untreated control. In seeded and unseeded sagebrush reduction
treatments, herbivory decreased perennial bunchgrass density.
Perennial bunchgrass density was greatest in the seeded sage-
brush reduction treatment when lagomorphs were excluded.
Perennial bunchgrass density initially decreased and then, after
2013, generally increased with time in the seeded sagebrush
reduction treatment with lagomorph exclusion. In contrast,
perennial bunchgrass density was similar across time in the
other vegetation treatments. Sandberg bluegrass density did
not vary among vegetation treatments (Fig. 3B; p = 0.288),
was less with herbivory (p < 0.001) and varied among years (p
= 0.002). The response of annual grass density to vegetation
treatment was influenced by lagomorph herbivory (Fig. 3C;
p < 0.001). In untreated control and unseeded sagebrush reduc-
tion treatments, annual grass density was initially greater with
herbivory, but became greater without herbivory from 2014 to
the end of the study. In the seeded sagebrush reduction treat-
ment, lagomorph herbivory increased annual grass density.
Annual grass density varied among years (p < 0.001). The
response of perennial forb density to vegetation treatment was
influenced by lagomorph herbivory (Fig. 4A; p = 0.013).
Herbivory decreased perennial forb density across all three
vegetation treatments; however, the difference appeared less
pronounced in the unseeded sagebrush reduction treatment com-
pared to the other treatments. Perennial forb density varied
among years (p < 0.001). Annual forb density did not vary
among vegetation treatments (Fig. 4B; p = 0.083). Annual forb
density was generally greater with lagomorph herbivory
(p < 0.001) and varied among years (p < 0.001). The response
of sagebrush density to vegetation treatment was influenced by
lagomorph herbivory (Fig. 4C; p < 0.001). Herbivory generally
reduced sagebrush density, but the effect appears more pro-
nounced where seeding occurred after sagebrush was reduced.

Discussion

Native herbivores, such as lagomorphs, can be important drivers
of vegetation dynamics in drylands. In our study, lagomorph
herbivory substantially influenced the outcome of restoration
actions as well as vegetation cover and density in untreated con-
trols. Though others have recognized that lagomorphs can influ-
ence plant communities (e.g. Gibbens et al. 1993; McAdoo et al.
2004; Abercrombie et al. 2019) and woody plant restoration
efforts (e.g. Holl & Quiros-Nietzen 1999; McAdoo et al. 2013;
Forsyth et al. 2015), their impacts on legacy effects and efforts
to reverse long-term effects of mismanagement have been
largely overlooked. Our results suggest that the effects of lago-
morphs can be substantial and, therefore, merit further investiga-
tion. Additional information on lagomorph, and likely other
native herbivores, effects are needed to improve management,
conservation, and restoration plans.

Our results suggest that lagomorphs can adversely affect
efforts to increase herbaceous vegetation in plant communities
with overabundant woody vegetation. Though perennial bunch-
grasses seeding after sagebrush reduction was necessary for sub-
stantially increases in bunchgrass cover and density, exclusion
of lagomorphs was also necessary to realize the full benefits of
seeding efforts. We suspect that lagomorphs caused high moral-
ity of perennial bunchgrass seedlings through heavy defoliation.
In Nevada, lagomorphs consumed up to 200 kg/ha of crested
wheatgrass (one of the two species we seeded) seedlings when
other forage was limited (McAdoo et al. 2004). Our finding that
herbivory limited seedling survival is counter to reports that
defoliation benefited crested wheatgrass seedling survival
(Denton et al. 2021), though this study used clipping to simulate
herbivory as opposed to measuring native mammal herbivory.
Also in disagreement with our results, lagomorph herbivory
did not influence seeded bunchgrass establishment in Nevada
(Roundy et al. 1985). It may be that lagomorph herbivory pres-
sure was relatively greater in our study than Roundy et al.
(1985). In addition, site, weather, other forage availability dif-
ferences may have contributed to dissimilar responses. Our
results suggest the potential for lagomorph herbivory may need
to be considered when weighing the challenges to and potential
risk of failure with restoration efforts, particularly those involv-
ing seeding. Quantitative assessments of how lagomorph popu-
lation densities and selectivity for seeded species influences
outcomes would be valuable.

Herbivory by lagomorphs may act as a biotic feedback main-
taining depleted understories in degraded shrub communities. In
our study, Sandberg bluegrass, a native bunchgrass, and peren-
nial forb cover and abundance increased with lagomorph exclu-
sion in the untreated controls. This implies that lagomorphs
contribute to and likely maintain the depleted understories in
these overly shrub-dominated communities. In shrub-
encroached grasslands in Arizona, desert cottontails (Sylvilagus
audubonii) were speculated to contribute to the competitive
advantage and persistence of shrubs (Abercrombie et al. 2019).
In plant communities where woody vegetation has increased
substantially, lagomorphs and likely other native herbivores
may contribute to the perpetuation of high shrub dominance
and depleted understories.

Lagomorph effects on sagebrush varied by treatment and sug-
gest that they can limit sagebrush recovery after disturbance.
Lagomorphs do not appear to influence sagebrush cover in
untreated control areas, but limited its recovery where sagebrush
was reduced. This is likely because lagomorphs have limited abil-
ity to affect mature sagebrush plants because of their size. In con-
trast, lagomorphs can cause morality of sagebrush seedlings by
cutting them off near the ground surface. Pygmy rabbits (Brachy-
lagus idahoensis), a smaller lagomorph, decreased sagebrush
seedling density and cover near their mounds (Parson et al.
2016). Similarly, in a sagebrush transplant study in Nevada, lago-
morphs caused mortality of sagebrush seedlings by cutting them
off just above the ground (McAdoo et al. 2013). Results from
the untreated control also support our conclusion that lagomorphs
can cause mortality of sagebrush seedlings, as sagebrush cover
was not influenced by lagomorph herbivory, but sagebrush
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density was less with lagomorph herbivory. Lagomorphs likely
reduce sagebrush density by causing morality of sagebrush seed-
lings in the untreated control, but not likely to influence sagebrush
cover because mature plants constituted the majority of it. The
effects of lagomorphs on sagebrush suggest that they may pose
a substantial barrier to sagebrush and other shrub restoration in
some locations. This is similar to other work showing that lago-
morphs can limit the success of woody plant restoration efforts
(Holl & Quiros-Nietzen 1999; McAdoo et al. 2013; Forsyth
et al. 2015).

The effects of lagomorphs on sagebrush dominance com-
pared to recovery suggest contrasting outcomes depending
on recent disturbance history. Lagomorphs likely contribute
to the perpetuation of sagebrush dominance and a depleted
understory in the absence of a disturbance to sagebrush, but
if sagebrush is disturbed and has to recover by recruiting
new individuals, lagomorphs may also suppress sagebrush
recovery. This indicates that management will also need to
consider the composition and recent disturbance history of a
plant community when determining and accounting for
potential effects of lagomorphs.

Lagomorph herbivory also appears to influence competitive
relationships within plant communities. This was most evident
when evaluating their effect on exotic annual grasses in areas
seeded with perennial grasses after sagebrush reduction. Unlike
Sandberg bluegrass and perennial bunchgrasses, exotic annual
grasses decreased with lagomorph exclusion in these areas. This
was likely because greater perennial bunchgrass cover and
abundance with lagomorph exclusion suppressed exotic annual
grasses. Perennial bunchgrasses are highly competitive with
exotic annual grasses and overlap substantially in resource
acquisition (Chambers et al. 2007; Davies 2008; James et al.
2008). Thus, increases in perennial bunchgrasses produce con-
sequential decreases in annual grasses. Similarly, lagomorphs
shifted grass composition from a species they consumed more
to a species they preferred less in New Mexico (Gibbens et al.
1993). In our study, annual forbs were greater with lagomorph
herbivory, further suggesting that lagomorphs alter competitive
relationships. This implies that lagomorphs can indirectly, as
well as directly, influence plant community composition.

The effects of lagomorphs on plant community characteristics
would likely affect other higher trophic levels. For example,
lagomorphs substantially decreased perennial forbs in all three
vegetation treatments (i.e. sagebrush reduction, seeded sage-
brush reduction, and untreated controls). Perennial forbs are a
critical food source for sage-grouse, a species of conservation
concern (Crawford et al. 2004; Pennington et al. 2016), and
other wildlife (Stephenson et al. 1985; Beck & Peek 2005).
Lagomorphs’ effects on sagebrush recovery could therefore
impact sagebrush-associated species. Sagebrush recovery after
disturbance is critical for the conservation of sagebrush-
associated organisms (Crawford et al. 2004; Suring et al. 2005;
Shipley et al. 2006). Lagomorph-induced habitat alterations
could influence other species populations and affecting their
conservation. Thus, conservation efforts for some wildlife spe-
cies may need to account for the effects of lagomorphs on wild-
life habitat.

Our study provides some important insights into the potential
effects of lagomorphs. The long-term nature of our experiment
was extremely valuable; however, the robustness of our study
was restrained by only being applied at two sites. More replica-
tions across a broader array of conditions would be valuable.
Another limitation of our study was that lagomorph densities
and the intensity and frequency of their use, which probably
largely determines effects, were not measured. Our study high-
lights that lagomorphs can be important drivers of plant commu-
nity dynamics, but did not determine under what circumstances
these effects will be realized. There are also likelymany situations
where their effects could be inconsequential, in particular if they
are not abundant or other disturbances are larger drivers of plant
community dynamics. These caveats of our study should be rec-
ognized when considering potential effects of lagomorph onman-
agement and restoration. Regardless, lagomorphs and likely other
native herbivores can have substantial effects on plant community
dynamics, restoration attempts, and likely, through their effects
on habitat, other wildlife species. Lagomorphs can also alter the
amount and composition of livestock forage. Therefore, manage-
ment, conservation, and restoration plans could be improved by
also considering and accounting for the potential effects of lago-
morphs and other noncharismatic herbivores.
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