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Abstract. Understanding spatial and temporal variation in plant traits is needed to accu-
rately predict how communities and ecosystems will respond to global change. The National
Ecological Observatory Network’s (NEON’s) Airborne Observation Platform (AOP) provides
hyperspectral images and associated data products at numerous field sites at 1 m spatial resolu-
tion, potentially allowing high-resolution trait mapping. We tested the accuracy of readily
available data products of NEON’s AOP, such as Leaf Area Index (LAI), Total Biomass,
Ecosystem Structure (Canopy height model [CHM]), and Canopy Nitrogen, by comparing
them to spatially extensive field measurements from a mesic tallgrass prairie. Correlations with
AOP data products exhibited generally weak or no relationships with corresponding field mea-
surements. The strongest relationships were between AOP LAI and ground-measured LAI
(r = 0.32) and AOP Total Biomass and ground-measured biomass (r = 0.23). We also exam-
ined how well the full reflectance spectra (380–2,500 nm), as opposed to derived products,
could predict vegetation traits using partial least-squares regression (PLSR) models. Among
all the eight traits examined, only Nitrogen had a validation R2of more than 0.25. For all vege-
tation traits, validation R2 ranged from 0.08 to 0.29 and the range of the root mean square
error of prediction (RMSEP) was 14–64%. Our results suggest that currently available AOP-
derived data products should not be used without extensive ground-based validation. Relation-
ships using the full reflectance spectra may be more promising, although careful consideration
of field and AOP data mismatches in space and/or time, biases in field-based measurements or
AOP algorithms, and model uncertainty are needed. Finally, grassland sites may be especially
challenging for airborne spectroscopy because of their high species diversity within a small
area, mixed functional types of plant communities, and heterogeneous mosaics of disturbance
and resource availability. Remote sensing observations are one of the most promising
approaches to understanding ecological patterns across space and time. But the opportunity to
engage a diverse community of NEON data users will depend on establishing rigorous links
with in-situ field measurements across a diversity of sites.

Key words: airborne spectroscopy; foliar traits; functional traits; hyperspectral remote sensing; Konza
Prairie; tallgrass prairie.

INTRODUCTION

The response of ecological communities to present
and future climate change, altered biogeochemical
cycling, and the loss of biodiversity will depend strongly
on species composition and their functional traits

(Suding et al. 2008). Typically, functional trait data are
collected in experimental conditions (e.g., greenhouses)
or field surveys on a few key focal species selected to rep-
resent an ecosystem. Quantification of spatial and tem-
poral variation in functional traits across and within
communities is lacking, mainly because field sampling to
collect species’ trait data in a spatially robust context is
time-consuming and labor-intensive process (Schimel
et al. 2013, Asner et al. 2015, Jetz et al. 2016). So, the
ability to parameterize terrestrial ecosystems in Earth
System Models, and therefore to predict how plant
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communities and ecosystems will change in the future, is
limited. To address this problem, ecologists must tackle
the understanding of plant trait variation and ecosystem
processes across a broad range of spatial and temporal
scales and environmental gradients (Levin 1992, McGill
2010, Asner et al. 2015, Jetz et al. 2016).
A common goal in environmental sciences is to improve

the landscape coverage and precision of ecological pattern
and ecosystem function measurements. Small-plot studies
typically require large investments of time, and interpola-
tion is required to make landscape inference. Imaging
spectroscopy (i.e., “hyperspectral” images recording many
narrow spectral bands) can provide spatially continuous
measurements that are directly observed and not interpo-
lated, but their fidelity to plot-scale characterizations is
often ambiguous. Therefore, a question whose answer
underpins the broad application of remotely sensed data
is: Do similar patterns and inferences of ecosystem proper-
ties emerge between ground measurements and remotely
sensed proxies across diverse landscapes?
The National Ecological Observatory Network

(NEON) is a promising platform for ecologists because
it provides an unparalleled range of observations across
a continental extent, with 81 field sites representing 20
unique ecoclimatic regions in North America, Hawaiʻi,
and Puerto Rico (Kampe et al. 2010). Standardized col-
lections of numerous measurements will be made at mul-
tiple spatial scales for a 30-yr time period. As part of
NEON, the Airborne Observatory Platform (AOP) col-
lects spatially contiguous reflectance data from their
imaging spectrometer and LiDAR measurements at
repeat intervals (~1–3 yr) for each site at high spatial reso-
lution (1 m). These spatially contiguous reflectance data
potentially help fill a crippling “scale gap” between spe-
cies’ data and other environmental datasets (Jetz et al.
2012, Schimel et al. 2013). Reflectance spectra and
LiDAR data can provide information on plant function,
vegetation structure, and biodiversity (Ustin et al. 2004,
2009, Cavender-Bares et al. 2017). National Ecological
Observatory Network also produces data products
derived from the reflectance spectra and LiDAR, such as
Total Biomass, Leaf Area Index (LAI), Canopy Nitrogen,
and Ecosystem Structure. These derived data products
are more intuitive for many ecologists compared to the
full reflectance spectra. Derived products and normalized
vegetation indices can also be compared across sites, time
periods, and sometimes different sensors because errors in
absolute measurements are eliminated for the different
site- and sensor-specific conditions.
Early research on mapping plant functional traits with

airborne imaging spectroscopy focused on canopy chem-
istry in forest and Mediterranean ecosystems (e.g., Wess-
man et al. 1988, Roberts et al. 1998, Ustin et al. 1998,
Ollinger and Smith 2005, Asner and Martin 2009, 2011).
More recent work has demonstrated the ability to pre-
dict and map foliar traits and composition of species
across several biomes enabled by NEON AOP (Chad-
wick et al. 2020, Chlus et al. 2020, Scholl et al. 2020,

Wang et al. 2020). For example, Wang et al. (2020)
mapped 26 foliar traits with AOP imaging spectroscopy
data across seven NEON ecoregions with R2 values ran-
ged between 0.28 and 0.82. Scholl et al. (2020) used mul-
tiple AOP data products (e.g., Ecosystem Structure and
Canopy Nitrogen) to classify species composition of
individual tree crowns in a subalpine coniferous forest.
Critically, the reliability of AOP data depends on estab-
lishing rigorous links with in-situ field measurements.
Given that NEON publishes AOP data in a publicly

and freely available fashion at 1 m spatial resolution, it
is imperative that researchers can understand how data
were produced, and trust that they can use them without
the requirement of validating data products. Here, we
examine the relationships between spatially extensive
plot-level trait measurements and AOP data in a well-
studied North American tallgrass prairie, Konza Prairie.
First, we examine the relationships between ground-
based measurements and readily available derived prod-
ucts of NEON AOP, such as Total Biomass, LAI,
Canopy Nitrogen, and Ecosystem Structure (Canopy
Height Model [CHM]), Second, we compare ground
measurements with the full AOP reflectance spectra.

METHODS

Study site

Konza Prairie Biological Station, part of NEON
Domain 06 (KONZ), is a 3,784 ha tallgrass prairie in
northeastern Kansas, USA (39°05 N, 96°35 W). The
average annual precipitation is 835 mm and the average
annual air temperature is 13°C. Aboveground tree bio-
mass, productivity, and vegetation structure are domi-
nated by a few perennial C4 species. There is a highly
diverse community of C3 grass, forb, and woody species
(>600 species) that co-occur within this grassland, but at
low abundances relative to C4 grasses (Freeman and
Hurlbert 1985, Towne 2002). Variation in vegetation
traits changes due to the experimental template of fire
and grazing that exists at Konza Prairie (Fig. 1). Within
scales <2,500 m2

, vegetation traits are often dominated
by C4 grasses in areas with frequent burning (<4 yr;
Nippert et al. 2011). At our scale of inquiry, vegetation
traits measured in 1-m2 plots should be similar to the
surrounding pixels.

Field measurements and sample processing

During 8 and 14 June 2017, we sampled 200 1-m2

plots, randomly located across Konza Prairie using Arc-
GIS 10.1. Plots were selected to span the breadth of
topographic gradients and long-term fire × grazing con-
trasts that exist within this location. In the field, some
locations were slightly shifted to avoid heavily wooded
or riparian areas, as well as roads, which delineate differ-
ent treatments. Leaf Area Index was measured using a
LAI-2000 Plant Canopy Analyzer (Li-COR, Lincoln,
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NE) within the center of each plot. Maximum canopy
height was measured for both the tallest herbaceous and
woody (when present) species within each plot. Plant
species identity was recorded for all species >10% cover
within each plot. Aboveground biomass was harvested
within 0.1-m2 square clip frames, with one replicate per
plot. Biomass was sorted into grass (live and dead litter),
forb, and woody vegetation. Total biomass was calcu-
lated as the sum of grass, forb, and woody biomass (not
including litter).
Biomass samples were dried in an oven at 60°C for

72 h before weighing to the nearest 0.01 g. Before chemi-
cal analysis, dried plant tissue was ground using a Wiley
mill and Wig-L-Bug ball mill grinder. Samples of
homogenized ground tissue from each of the field plots
were measured for stable Carbon and Nitrogen isotope
ratios and elemental concentrations. Samples were com-
busted with a CE1110 elemental analyzer (Carlo Erba
Instruments, Milan, Italy) and coupled to a Delta Plus
mass spectrometer (Thermo Electron Corporation, Bre-
men, Germany) for isotope analysis using a ConFlo II
Universal Interface (Thermo Electron Corporation, Bre-
men, Germany) in the Stable Isotope Mass Spectrometry
Laboratory (SIMSL) at Kansas State University. The
isotopic ratio of samples was calculated using delta nota-
tion as: δ = [(Rsample/Rstandard − 1) × 1,000], where R is
the ratio of the heavy to light isotopes for the sample
and standard, respectively. The within-run variability for
δ13C (isotopic composition of carbon) estimated as the
SD of working standards, varied between 0.03 and
0.06‰ across runs. The within-run variability for δ15N
(isotopic composition of nitrogen) varied between 0.07
and 0.11‰ across runs.

AOP data

We downloaded NEON’s LiDAR-derived Ecosystem
Structure CHM ( DP3.30015.001; accessed 1 June 2020),
reflectance-derived Canopy Nitrogen (DP3.30018.001;
accessed 1 June 2020), LAI (DP3.30012.001; accessed 1
June 2020), Total Biomass (DP3.30016.001; accessed 1
June 2020), and the full orthorectified surface reflectance
data (DP3.30006.001; accessed 1 June 2020) for
NEON’s 2017 KONZ site collections. The Ecosystem
Structure CHM is derived from LiDAR point cloud
data. A continuous surface representing the height at the
top of the canopy (m) is produced. The Canopy Nitro-
gen product is based on the Normalized Difference
Nitrogen Index (NDNI) using reflectance at 1,510 nm
(associated with the Nitrogen content of leaves) and
1,680 nm (associated with foliar biomass) to estimate
the relative amount of Nitrogen in vegetation (unitless).
The LAI product represents the ratio of the surface area
of upper leaf to ground surface area of broadleaf cano-
pies, and is produced using an algorithm with the Soil
Adjusted Vegetation Index (SAVI) as an input (unitless).
The Total Biomass product (g m−2) is calculated from a
functional relationship using cumulative growing season
NDVI from several temperate and boreal forest sites, as
well as latitude for each site. For full details on each pro-
duct, see NEON documentation associated with each
product (https://data.neonscience.org).
Airborne Observation Platform data were extracted

for the corresponding 1 m pixel over each of the 200
field plots using coordinate locations recorded in the
field with a Trimble GEO5s and a Trimble GEO7, both
with an accuracy of <1 m. As the vegetation traits we

FIG. 1. NEON AOP flightlines with Konza Prairie in white box (left); and locations of 200 ground validation field plots, which
capture high variability in grazing and fire regimes (right).
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examined are similar within ~2,500 m−2 (Nippert et al.
2011), small shifts in pixel alignment due to georectifica-
tion and mosaicing should not substantially affect rela-
tionships between AOP vegetation products and trait
measurements from the field. Nonetheless, we addition-
ally present results using a circular 10-m buffer around
the location of each plot to average AOP data (ground-
based plot data were not averaged across the buffer).
Moreover, we filtered for pixels with near-infrared
(NIR) reflectance ≥20% and Normalized Difference
Vegetation Index (NDVI) ≥0.5 to remove possible shad-
ows or other contaminants to well-lit vegetation pixels
(Baldeck and Asner 2013).
The NEON AOP includes an imaging spectrometer

covering 380–2,500 nm in 426 bands and provides a
reflectance product with a spectral sampling of ~5 nm
and a 1 m spatial resolution (Kampe et al. 2010). In
2017, NEON AOP flew a defined flight box over KONZ
on 5 and 9 June. Flight timing was designed to capture
the peak greenness of the site, determined from a 15-yr
analysis of MODIS NDVI (Moderate Resolution Imag-
ing Spectroradiometer NDVI) measurements. Images of
surface reflectance were generated by NEON after pro-
cessing the raw spectrometer measurements to a cali-
brated at-sensor radiance by applying a rigorous
orthorectification and atmospheric correction. The at-
sensor radiance and orthorectification are determined
using in-house NEON algorithms, while the atmospheric
correction is determined with ATCOR-4 (ReSe Applica-
tions LLC, Wil, Switzerland; see details in data.neon-
science.org/api/v0/documents/NEON.DOC.001288vA).

Analysis

We first examined Pearson correlations between AOP
products and ground-based measurements. Then, we
performed PLSR using the full canopy spectra to assess
the ability of AOP spectral reflectance to predict
ground-based field measurements. Partial least-squares
regression is commonly used to evaluate relationships
between spectroscopic data and functional traits (e.g.,
Ollinger and Smith 2005, Dahlin et al. 2013, Serbin et al.
2014). Partial least-squares regression reduces the large
predictor matrix (i.e., 426 bands of reflectance) to fewer,
uncorrelated latent components. Atmospheric water
absorption regions (1,130–1,445 nm and 1,790–
1,955 nm) were removed due to low signal-to-noise ratio
in these regions. We used the “plantspec” package (Grif-
fith and Anderson 2019) in the R computing environ-
ment (RCore Team 2020). This package is a wrapper for
the “pls”package (Wehrens and Mevik 2007) for optimiz-
ing and fitting PLSR models. The “SPXY” method, a
modified Kennard-Stone algorithm implemented in
“plantspec”, was used to optimally split the data into
representative subsets. This method considers variation
in both the spectra and response values when subdivid-
ing the data and has been shown to out-perform other
methods (Saptoro et al. 2012, Griffith and Anderson

2019). Seventy-five percent of the data was used for cali-
bration and 25% of the data was used for validation. We
used “plantspec” to select an optimal model with the
lowest RMSEP after comparing the raw spectra to three
data transformations (Constant Offset Elimination, Vec-
tor Normalization, and a Min/Max Normalization).
The number of latent vectors used in the optimal model
was chosen as the minimum number of factors that
resulted in a predicted residual error sum of squares
(PRESS) from leave-one-out cross-validation, with a
probability less than or equal to 0.75. We report results
from the optimal model with the lowest RMSEP.

RESULTS AND DISCUSSION

Correlations (Pearson’s r) showed generally weak or
no relationships between AOP products and correspond-
ing ground-based measurements (Table 1). Using the 10-
m buffer and the NIR/NDVI filter for AOP data
resulted in slightly better relationships than the 1 m data
and/or no filter (Table 1 and Appendix S1: Table S2).
The AOP Canopy Nitrogen and CHM showed no rela-
tionships with ground-based Nitrogen or canopy height,
respectively (i.e., r-value close to 0). The AOP Total Bio-
mass and LAI products were better correlated with asso-
ciated ground-based measures. Airborne Observation
Platform Total Biomass, using both the 1 m pixel and the
10-m buffer, was significantly correlated with ground-
based total biomass (r = 0.21 and 0.23, respectively) and
grass biomass (r = 0.17 and 0.23, respectively). Airborne
Observation Platform LAI, using only the 10-m buffer,
was significantly correlated with ground-based LAI
(r = 0.32). Although, AOP Total Biomass and AOP LAI
showed significant correlations with ground-based mea-
sures, most of the variation in vegetation traits was not
captured by the corresponding AOP product, and there
are large mismatches in absolute values.
The AOP Biomass product reached a ceiling and never

exceeded 40 g m2, underestimating ground-based bio-
mass sometimes by more than a factor of 10 (Fig. 2a).
The AOP Biomass product’s reliance on the NDVI may
be one reason that biomass values appear to reach a low
upper limit as NDVI at our plots shows the same pattern
(Appendix S1: Fig. S1). Normalized Difference Vegeta-
tion Index does not continue to increase with high bio-
mass measured in the field, possibly because of NDVI
saturation. Normalized Difference Vegetation Index is
known to saturate in areas of high biomass and thus is
thought to be a poor index of vegetation structure and
function in dense forests, but reliable in grasslands and
other less structurally complex habitats (Sellers 1985,
Gao et al. 2000, Goodin and Henebry 1997). The AOP
Biomass product uses an algorithm developed for woody
biomass in forest ecosystems. Even for forests, it is
known to saturate at biomass levels greater than 180 g/
m2 at high latitudes and greater than 60 g/m2 at low lati-
tudes (NEON.DOC.004363vA; Dong et al. 2003). At
our tallgrass prairie site, biomass greatly exceeded 60 g/m2
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with grass biomass averaging 170.9 g/m2 within the first
month of the 2017’s growing season. At least 5 core and 2
relocatable NEONsites are predominately grassy (Color-
ado Plains Experimental Range, Konza Prairie, Jornada
Experimental Range, Lyndon B. Johnson National Grass-
land, Woodworth, Northern Great Plains Research Labo-
ratory, and Marvin Klemme Range Research Station),
and many more sites have at least some grass or herba-
ceous cover, where AOP products could be explored fur-
ther. Our results demonstrate that there is no 1:1
relationship between AOP products and corresponding
ground-based measures; however, transforming variables
may improve relationships.
The AOP LAI product is also based on a spectral

index, the SAVI, but it did not show a saturating rela-
tionship with our ground measurements (Fig. 2b). Leaf
Area Index products developed from optical remote
sensing (vs. radar or LiDAR) often saturate in dense for-
est canopies because the signal is predominately driven
by the top of the canopy. Instead, there is substantial
scatter around a positive linear correlation at our site,

where LAI is <6. Therefore, on average, increases in LAI
is captured by the AOP product. However, at any speci-
fic location at the 1 m scale provided, LAI predicted
from AOP observations may be highly inaccurate.
Airborne Observation Platform products were corre-

lated with non-corresponding ground-based measures
(Table 1). For example, AOP Total Biomass using the
1 m pixel and 10-m buffer, was significantly correlated
with LAI (r = 0.19 and 0.29, respectively), canopy
height (r = 0.16 and 0.19, respectively), and δ15N
(r = 0.19 and 0.19, respectively). Airborne Observation
Platform LAI using the 10 m buffer was significantly
correlated with total biomass (r = 0.24) and grass bio-
mass (r = 0.21). Airborne Observation Platform Canopy
Nitrogen, using both the 1 m pixel and 10-m buffer, was
significantly correlated with ground-based LAI (r = 0.36
and 0.45, respectively), canopy height (r = 0.18 and
0.20, respectively), total biomass (r = 0.22 and 0.26,
respectively), and grass biomass (r = 0.29 and 0.32,
respectively). These relationships suggest that spectrally
derived AOP products, such as Canopy Nitrogen, are

TABLE 1. Pearson correlation matrix of NEON AOP data products using an NIR/NDVI filter and ground-based measurements
from 200 plots at Konza Prairie.

AOP
Total

Biomass

AOP
Total

Biomass
10 m

AOP
CHM

AOP
CHM
10 m

AOP
LAI

AOP
LAI
10 m

AOP
Nitrogen

AOP
Nitrogen
10 m LAI

Canopy
height

Total
biomass

Grass
biomass

Forb
biomass C N δ15N

AOP
Total
Biomass
10 m

0.82***

AOP
CHM

0.24*** 0.28***

AOP
CHM
10 m

0.26*** 0.35*** 0.92***

AOP
LAI

0.83*** 0.67*** 0.16* 0.14

AOP
LAI
10 m

0.72*** 0.88*** 0.31*** 0.30*** 0.72***

AOP
Nitrogen

0.73*** 0.64*** 0.06 0.05 0.74*** 0.63***

AOP
Nitrogen
10 m

0.56*** 0.73*** 0.08 0.02 0.54*** 0.77*** 0.83***

LAI 0.19** 0.29*** −0.10 −0.09 0.12 0.32*** 0.36*** 0.45***

Canopy
height

0.14 0.19** 0.09 0.11 0.04 0.13 0.18* 0.20** 0.49***

Total
biomass

0.21*** 0.23*** −0.08 −0.09 0.16* 0.24*** 0.22** 0.26*** 0.35 0.21**

Grass
biomass

0.17* 0.23*** −0.05 −0.03 0.09 0.21*** 0.29*** 0.32*** 0.38 0.27*** 0.80***

Forb
biomass

0.11 0.08 −0.04 −0.10 0.16* 0.12 −0.03 0.01 0.07 −0.02 0.49*** −0.09

C −0.05 −0.06 −0.06 −0.05 −0.05 0.00 −0.05 −0.01 0.10 −0.08 0.06 0.01 0.06

N 0.10 0.07 −0.06 −0.09 0.20** 0.10 −0.06 −0.10 −0.06 −0.12 −0.02 −0.27 0.29*** 0.42***

δ15N 0.19** 0.19** 0.02 0.01 0.15** 0.12 0.05 0.04 0.00 0.06 0.01 −0.08 0.11 0.07 0.41***

δ13C −0.09 0.03 −0.03 0.01 −0.13 0.00 0.08 0.20** 0.21 0.16* 0.01 0.33 −0.42*** −0.08 −0.35*** −0.18**

Notes: CHM = Ecosystem Structure Canopy Height Model; LAI = leaf area index; NDNI = Normalized Difference Nitrogen
Index. Total biomass is the sum of grass, forb, and woody biomass. P ≤ 0.001 (***), P ≤ 0.01 (**), and P ≤ 0.05 (*). See Appendix
S1: Table S2 for results without an NIR/NDVI filter for AOP data.
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largely driven by plant biomass (Homolová et al. 2013,
Knyazikhin et al. 2013).
Examining the full reflectance spectra in PLS regres-

sions, as opposed to correlations with the AOP products,
revealed more promising relationships for some traits. In
general, using a 10-m buffer and no NIR/NDVI filter
resulted in better or similar relationships for most traits;
therefore, we focus on those results (Table 2). Regardless
of the spatial extent or use of a filter, R2 never exceeded
0.30 for any trait (see Appendix S1: Table S3 for full
comparison). The PLS regression models for all but one
of the eight traits we examined explained less than 25%
of the measured variation in each trait (Table 2; Fig. 3).
The model for Nitrogen performed moderately well, at
least relative to other traits (R2 = 0.29; Fig. 3f), but
worse than typically found using remote sensing to esti-
mate plant Nitrogen (Mutanga et al. 2004, Skidmore
et al. 2010, Homolová et al. 2013, Van Cleemput et al.
2018). Konza contains a complex mosaic of different
grazing and fire regimes, which is known to affect spe-
cies composition, plant productivity, and vegetation
traits across the larger landscape (Fig. 1; Briggs and
Nellis 1991). Thus, spatial and temporal variability in
Nitrogen has been previously mapped at this site with
reasonable success using airborne hyperspectral imagery
(Goodin et al. 2004, Ling et al. 2014, 2019). In our
model, predictions for Nitrogen were biased low at the
high end of measured values (Fig. 3), either because of a
saturating relationship with reflectance data and/or
heteroscedasticity in measured values (i.e., an unequal
range of values at the high vs. low end of these traits).
For LAI, using the full spectra resulted in a lower R2

when predicting ground-measured LAI than compared

to the correlation with the AOP LAI product. This sug-
gests that an index-based measure (i.e., a ratio of two
or more regions of the reflectance curve such as the
SAVI), which can normalize soil background or atmo-
spheric effects (Huete 1988), may be more robust as a
proxy for LAI at least as a relative measure. Our low
predictive accuracy for LAI, another trait that tends to
be well predicted in grasslands using imaging spec-
troscopy (Van Cleemput et al. 2018), may be because of
the high LAI at this mesic tallgrass prairie site. Predic-
tions of Carbon and δ13C were particularly poor, essen-
tially capturing none of the variations in ground-based
measures.
While other studies have reported more reliable pre-

dictions of morphological and biochemical foliar traits
using AOP data in PLSR models (e.g., Wang et al. 2020,
Kamoske et al. 2021), we focused on a different suite of
traits that correspond directly to NEON’s products.
Additionally, other NEON studies have leveraged
greater variability in trait values across sites and biomes.
For example, in Wang et al. (2020), the range of Carbon
and Nitrogen values across sites was about 6 and 20
times larger, respectively, than our measurements at
Konza. By design, NEON provides data across a net-
work of sites and ecoregions allowing comparative
macrosystems research; however, site comparisons are
not the only purpose of NEON data. The 1 m spatial
resolution AOP data should also enable high-resolution
mapping for site-specific research. Yet, inaccuracies in
the field and spectral data alignment in space and/or
time, biases in trait measurements or AOP algorithms,
and model uncertainty can lead to erroneous mapping
of spatial patterns across a site.
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FIG. 2. Scatterplots of NEON AOP’s Total biomass (a; slope = 0.01 and intercept = 29.5) and LAI (b; slope = 0.17 and inter-
cept = 1.52) products using an NIR/NDVI filter and a 10-m circular buffer with corresponding field measurements from 200 plots
at Konza Prairie.
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One reason for poor relationships between spectra and
ground-based measurements is that mosaicked NEON
products combine different flightlines with variable flight
conditions (e.g., brightness) (Chadwick et al. 2020). Sec-
ond, other studies that find better statistical relationships
with plant traits have performed additional corrections of
the reflectance data. Custom shade masks, atmospheric
correction and smoothing that accounts for local topog-
raphy and view-angle geometry, and access to preliminary
data provided by the AOP team to collect field measure-
ments in ideal locations could help improve relationships
with ground-based data (Chadwick et al. 2020).
Our results show that ground-validation is necessary

before using AOP data. Importantly, field data must also

be collected appropriately to align with airborne obser-
vations (Chadwick et al. 2020, Schweiger 2020). In gen-
eral, field sampling should aim for representing spatial
coverage as well as sampling across trait space, which
are not mutually inclusive. While we prioritized extensive
sampling across geographic space, we did not always
sample the full range of trait variability. For some traits
such as leaf Nitrogen, greater sampling in regions with
higher leaf Nitrogen levels may have improved statistical
relationships. Sampling the full range of values for some
traits such as leaf biochemical traits, which may not be
easy to estimate in the field, may require prior under-
standing of environmental features that contribute to
trait changes (Schweiger 2020); although these

TABLE 2. Coefficient of determination (R2) and Root Mean Square Error of Prediction (RMSEP; in units of measurement and as
% of mean value) from partial least-squares regressions (PLSR) between the AOP reflectance spectra with no NIR/NDVI filter
and ground-measured traits from 200 plots at Konza Prairie.

1 m 10 m buffer

Validation R2 RMSEP (%) Validation R2 RMSEP (%)

LAI 0.09 1.13 (51.87%) 0.19 1.04 (47.45%)
Total biomass (g m2) 0.13 125.83 (56.33%) 0.11 121.75 (58.45%)
Grass biomass (g m2) 0.00 109.57 (63.88%) 0.12 107.48 (62.69%)
Canopy height (cm) 0.03 15.32 (34.23%) 0.14 13.42 (30.00%)
C (mg/g) −0.01 6.06 (13.87%) 0.02 5.75 (13.18%)
N (mg/g) 0.13 0.36 (31.54%) 0.29 0.34 (29.54%)
δ13C (‰) 0.10 4.50 (23.57%) 0.08 5.16 (27.03%)
δ15N (‰) 0.14 1.39 (52.31%) 0.16 1.54 (58.14%)

Notes: See Appendix S1: Table S3 for PLSR results using NIR/NDVI filter. The value of R2 is never greater than 0.30 in models
with or without the NIR/NDVI filter at 1 m or 10 m.

FIG. 3. Predicted vs. measured trait values from PLSRusing AOP reflectance data with no NIR/NDVI filter and a 10-m circular
buffer. Solid line = 1:1 relationship. Validation of R2is shown.
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relationships are often why trait mapping is desirable in
the first place. Moreover, given the high spatial accuracy
that is required for 1 m resolution airborne spectroscopy
data, ground-based sampling should include a buffer
(e.g., 3 × 3 pixels), within which the trait of interest is
representative because of the inevitable pixels shifts in
mosaicking and georectification, in addition to sensor
“blurring” when radiance from neighboring pixels con-
tribute to the signal of the focal pixel. Inamdar et al.
(2020) found that only 55.5% of the signal in a pixel
originated from the materials within the boundaries of
that pixel. Because of the differences in the spatial scale
of species turnover and variation in plant functional
types at different sites, future work could assess multiple
spatial extents of both field data and AOP data to find
the most robust relationships.

CONCLUSION

Remote sensing observations, NEON’s AOP in partic-
ular, provide unparalleled spatially contiguous, high spa-
tial resolution, and directly observed measurements to
assess vegetation structure and function. Complete spa-
tial sampling provided by remote sensing observations is
one of the most promising approaches to understanding
ecological processes across scales, rather than relying on
spatial averaging (Goodin and Henebry 2002, Denny
2017). The promise of mapping functional traits is per-
suasive because it enables ecologists to quantify how
communities change over space and time in response to
global change. However, the usefulness of remote sens-
ing observations depends on establishing rigorous
empirical relationships with field measurements. Site-
specific ground validation, in a diversity of sites and
ecoregions, can help refine algorithms used to generate
remote sensing products. In general, we found better
agreement between field-measured vegetation traits and
AOP data when we used a 10-m circular buffer. How-
ever, many users of NEON data may assume that the
readily available 1 m data is reliable. Our analysis sug-
gests—at least for one well-studied grassland that hosts
a core NEON site—that currently available “off-the-
shelf” AOP data products are inaccurate and not appro-
priate for high-resolution mapping of vegetation traits
without ground-based validation. For many of the traits
measured here, no relationship exists between field mea-
surements at the 1 m scale and AOP data. Grassy sys-
tems (grasslands and savannas) are understudied
compared to trees and forests (Veldman et al. 2015,
Murphy et al. 2016, Nerlekar and Veldman 2020), and
grassy sites may be unexpectedly challenging for air-
borne spectroscopy (Van Cleemput et al. 2018). Many
remote sensing scientists and ecologists typically assume
grasslands to be structurally simple compared to forests.
However, high species diversity within a small area (e.g.,
a 1 m2 pixel), mixed functional types of plant communi-
ties, and mosaics of disturbance and resource availability
complicate remotely sensed predictions for these

ecosystems. Collecting corresponding field spectra in
these diverse systems (leaf- and plot-level spectra) may
be critical to connecting airborne spectral observations
with plot-level trait measurements from the field.
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