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A B S T R A C T

Droughts are disproportionately impacting global dryland regions where ecosystem health and function are 
tightly coupled to moisture availability. Drought severity is commonly estimated using algorithms such as the 
standardized precipitation-evapotranspiration index (SPEI), which can estimate climatic water balance impacts 
at various hydrologic scales by varying computational length. However, the performance of these metrics as 
indicators of soil moisture dynamics at ecologically relevant scales, across soil depths, and in consideration of 
broader scale ecohydrological processes, requires more attention. In this study, we tested components of climatic 
water balance, including SPEI and SPEI computation lengths, to recreate multi-decadal and periodic soil- 
moisture patterns across soil profiles at 866 sites in the western United States. Modeling results show that 
SPEI calculated over the prior 12-months was the most predictive computation length and could recreate changes 
in moisture availability within the soil profile over longer periods of time and for annual recharge of deeper soil 
moisture stores. SPEI was slightly less successful with recreating spring surface-soil moisture availability, which 
is key to dryland ecosystems dominated by winter precipitation. Meteorological drought indices like SPEI are 
intended to be convenient and generalized indicators of meteorological water deficit. However, the inconsistent 
ability of SPEI to recreate ecologically relevant patterns of soil moisture at regional scales suggests that process- 
based models, and the larger data requirements they involve, remain an important tool for dryland ecohydrology   

1. Introduction

Rising temperatures and shifting precipitation patterns are
increasing the severity and frequency of droughts across the globe, the 
impacts of which are disproportionately affecting dryland ecosystems 
(Noy-Meir, 1973; Bradford et al., 2020). Drylands cover ~ 40% of the 
land surface and provide essential ecosystem services to over 2.5 billion 
people globally (Reynolds et al., 2007; Prăvălie, 2016). However, future 
climate projections indicate pronounced shifts in aridity, especially in 
drylands, that require better understanding and ability to predict 
ecologically relevant impacts of climatic water balance, and better 
planning tools for scientists and resource managers (Kemp et al., 2015; 
Bradford et al., 2020). 

Quantifying drought severity is essential to understand and manage 

the ecohydrological, agricultural, and social impacts of water scarcity 
(Reynolds et al., 2007; Slette et al., 2019; Slette et al., 2020). Numerous 
algorithms are available to estimate drought severity from climatic 
water-balance, but the ecological relevance of these indices is likely 
affected by the decoupling of relationships along the soil–plant-atmo-
sphere pathway (McDowell et al., 2011; Hoover et al., 2017; Bradford 
et al., 2020). The generalized nature of drought indices make them 
applicable over larger spatial extents, but may also limit their accuracy 
at finer spatial resolutions (e.g., site, plot) where vegetation composi-
tion, soil characteristics, and disturbance history affect ecohydrological 
processes and necessitate more granular approaches to quantifying 
drought impacts (Feilhauer et al., 2018; Huang et al., 2020; Slette et al., 
2020). 

Seasonal variation in moisture availability has profound impacts on 
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dryland ecohydrological niches through linkages between soil moisture 
and vegetation composition and functioning (Schlaepfer et al., 2012; 
Germino and Reinhardt, 2014; Biederman et al., 2018; James et al., 
2019). Many drylands are characterized by moisture surpluses during 
winter and spring, followed by moisture deficits in summer and fall 
which vary over soil depths to influence plant development, water use, 
and reproductive strategies (Barnard et al., 2017; Szutu and Papuga, 
2019; Knowles et al., 2020). Dryland shrub species such as big sagebrush 
(Artemesia tridentata) rely on winter precipitation for surface moisture 
availability in spring to promote seed germination and establishment, 
and for recharge of deeper soil moisture stores for transpiration when 
surface soil layers dry in summer (Germino and Reinhardt, 2014; Shriver 
et al., 2018; Szutu and Papuga, 2019; O’Connor et al., 2020). Physically- 
based models (such as SoilWat2; Schlaepfer et al., 2012; Bradford et al,. 
2014b) estimate evapotranspiration and depth-resolved soil moisture 
and temperature dynamics quite well (Schlaepfer et al., 2012; Bradford 
et al., 2014a; Schlaepfer et al., 2017; Petrie et al., 2020), but due to 
model complexity, are limited in interpretability and must balance 
spatial resolution with data limitations and computational 
requirements. 

The standardized precipitation-evapotranspiration index (SPEI) is a 
widely used drought index based on climatic water balance (difference 
between precipitation and potential evapotranspiration [pET]) and has 
proven to be especially useful for cross-site comparisons and climate- 
change studies (Vicente-Serrano et al., 2010; Zhao et al., 2021). The 
SPEI algorithm of drought severity can be computed over various record 
lengths to represent different hydrologic scales (e.g., site- to basin-scale 
hydrology; Vicente-Serrano et al., 2010; Li et al., 2015), and has be 
shown to be an excellent indicator of agricultural and ecohydrological 
processes including soil moisture, streamflow, tree-ring records, and 
crop yields (Vicente-Serrano et al., 2012; Tian et al., 2018; Babst et al., 
2019). However, previous studies have focused primarily on moisture 
dynamics at discrete depths and considered only volumetric water 
content, indicating a knowledge gap in understanding depth-resolved 
dynamics across sites and regions, and with more ecologically relevant 

moisture metrics that account for soil texture differences on matric po-
tential and field capacity such as soil water availability (SWA). 

In this study, we combined 36 years (1979–2015) of weather data, 
SPEI estimates, landscape characteristics, and estimates of soil water 
availability to model long-term and seasonal variability in soil moisture 
dynamics at 866 sites across the western United States using machine 
learning. Specifically, our objectives were to test gridded weather data, 
SPEI estimates, and the length over which SPEI was calculated, to assess 
SPEI and moisture dynamics for correlations with depth-resolved and 
event-specific soil water availability (SWA) including surface avail-
ability in spring, and deep soil recharge from winter precipitation. We 
apply a machine learning framework (random forests) to quantify the 
importance of predictor variables and account for potential interactions 
and collinearity among predictors. 

2. Materials and methods 

2.1. Spatial data and multi-scalar drought index 

We calculated the SPEI index at 866 sites (Fig. 1) using the ‘SPEI’ 
package in R (Beguería et al., 2017) over the period of 1979–2015 across 
the western United States. We used monthly averages of precipitation 
and potential evapotranspiration (pET) extracted from the University of 
Idaho Gridded Surface Meteorological Dataset (GridMET; Abatzoglou, 
2013) for 1979–2014 at a 4 km resolution. Pixel-level vegetation type 
was aggregated from 30 m resolution 2011 National Landcover Data-
base images (Homer et al., 2015). SPEI estimates of drought severity 
were computed at periods ranging from one to 48 months and tested 
individually as indicators of soil moisture dynamics to determine which 
interval would be most predictive for further modeling (see section 3.2 
below). 

2.2. Ecohydrological modeling 

Daily SWA was simulated at all 866 sites using SoilWat2 (Version 

Fig. 1. Geographic locations and elevation and mean annual precipitation (MAP) distributions of the 866 sites of vegetation and soil measurements and modeling of 
soil water availability. 
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3.2) (Schlaepfer et al., 2012; Bradford et al., 2014b). SoilWat2 is a daily 
time-step process-based model that simulates soil moisture pools and 
fluxes across discrete soil layers and accounts for interactions between 
vegetation, climate, and soil conditions by incorporating Penman- 
Monteith energy-balance evapotranspiration estimates (Monteith, 
1965). SoilWat2 accuracy has been verified in sagebrush ecosystems to 
observations of soil water potential and eddy covariance measurements 
of evapotranspiration (Schlaepfer et al., 2012) and daily volumetric 
moisture content (Bradford et al., 2014a). Further, soil temperature has 
been validated at multiple depths in several ecosystems (Petrie et al., 
2020) and SoilWat2 estimates of mean monthly soil moisture patterns 
showed agreement with multiple global circulation models (Schlaepfer 
et al., 2017). Meteorological forcings, including daily maximum and 
minimum air temperature and daily precipitation amounts, were 
extracted from the GridMET data set (Abatzoglou, 2013). Soil textural 
inputs were characterized to 50 cm depths using field-collected soil 
samples, when available, and up to 250 cm depths using matching soil 
map units from the SSURGO soils database (Staff, 2017). For this study, 
daily soil moisture content values were simulated for soil layers termi-
nating at 5, 10, 20, 30, 40 ,50, 70, 90, 110, 130 and 150 + cm. To 
characterize the influence of vegetation biomass on evapotranspiration 
and soil moisture fluxes, plant cover by species was measured using line- 
point intercept measurements (3 spoke-in-wheel transects; Herrick 
et al., 2005). Potential biomass was then estimated at each plot for the 
entire record length using algorithms included within SoilWat2 (Brad-
ford et al., 2014b). We report SWA instead of volumetric water content 
because it is reported in mm or water depth (similar to ET) and because 
it incorporates aspects of soil characteristics, effectively normalizing 
moisture availability across multiple soil types. 

2.3. Predictive models of soil moisture dynamics 

We used random forest algorithms to develop models of soil moisture 
dynamics from SPEI and meteorological variables due to their ability to 
handle large datasets, assess parameter interactions, and variables by 
importance based on their influence on model accuracy (Barnard et al., 
2019). Specifically, we used permuted variable importance which 
measures the importance of a predictor by recording a baseline model 
accuracy on an out-of-bag sample, permuting the predictor variable, and 
passing test samples back through the random forest. Variable impor-
tance is then determined as the difference in accuracy between the 

baseline model and that with the permuted variable importance. 
We developed models of (1) soil moisture dynamics across the entire 

record length, (2) recharge of deep soil moisture (>50 cm) for each 
water year (October to September), and (3) surface soil moisture (<20 
cm) availability in early spring (March and April). For the whole record 
length, we specifically modeled changes in monthly soil moisture over 
the entire record length (not monthly absolute values of SWA) to 
minimize violating model assumptions of independence that would 
occur with temporally-autocorrelated data. Deep soil moisture recharge 
was calculated as the maximum positive change in SWA during the 1-Oct 
to 31-Sept water year. Spring soil moisture availability was determined 
as the average SWA during March and April, the months during which 
surface soil moisture availability is most important for seedling germi-
nation and emergence in arid shrublands (DiCristina and Germino, 
2006; James et al., 2019; O’Connor et al., 2020). 

3. Results 

3.1. SPEI variability: Hotspots for drought? 

Over the period of 1979–2015, average SPEI using a 12-month 
computation length was lowest and indicated greater drought severity 
in the western portion of the United States (Fig. 2). Drought was more 
severe in southern Colorado, northern New Mexico, the basin and range 
region of Nevada, the rain shadow of the Cascade Range and Sierra 
Nevada (central Washington and Oregon and Nevada) and the Northern 
Rocky Mountains. There was persistently higher drought severity on the 
New Mexico and Arizona border just south of the four-corners region 
and the inland Northwest (central Idaho, western Montana, eastern 
Washington and Oregon). Interestingly, areas with mean SPEI closest to 
zero typically had the greatest variability in SPEI over the record length 
(standard deviation of SPEI). 

Changes in annualized SPEI (ΔSPEI) from 1978 to 2015 were most 
negative (i.e. increasing drought over record length) in the western 
United States and corresponded linearly to average SPEI (R2 = 0.91; 
Fig. 1). Specifically, the four-corners region of the Desert Southwest, and 
western Nevada had the greatest increases in drought severity, whereas 
the upper Midwest and Northeast regions of the US generally had de-
creases in drought severity. The ΔSPEI was related to the standard de-
viation of SPEI in a parabolic fashion similar to how mean SPEI relates to 
the standard deviation of SPEI. 

Fig. 2. Maps and correlations of mean, standard deviation among years (σ), and change (Δ) in the standardized precipitation-evapotranspiration index (SPEI), 
calculated over a rolling 12-month period, for the 1978–2015 period. White pixels in the ΔSPEI panel indicate no significant slope in a linear model of SPEI over time 
from 1978 to 2015 (p < 0.05). Smaller or more negative values of SPEI indicate a smaller water balance and drier conditions. Note, most Δ SPEI values near zero did 
not have a significant linear trend (at p < 0.05) and are omitted from scatter plots. 
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3.2. Comparison of SWA, SPEI, and weather data 

The correlation of SPEI and SWA across a wide range of elevations 
and precipitation regimes was dependent on the SPEI computation 
length and soil depth (Figs. 1, 3). Overall, correlations of SWA and SPEI 
were greater in shallow and deep soils (<20 and > 50 cm, respectively) 
than at intermediate depths (Fig. 3). Correlations between SWA and 
SPEI in shallow soils were greatest with SPEI computed on time periods 
equal to or <4 months, compared to 4–64 months prior to the date for 
which SWA was estimated. In contrast, correlations between SWA in 20 
cm or deeper soils and SPEI were greatest with SPEI computed on longer 
time periods preceding the date of SWA estimated, specifically 12–60 
months (Fig. 3). The correlation between SWA and SPEI was greatest 
using a 12-month time frame for SPEI calculation for either intermediate 
soil depths (20–50 cm) and bulk SWA averaged across the entire vertical 
soil profile (Fig. 3), hence 12-month SPEI was used for subsequent 
modeling. 

Although SWA across the soil profile generally covaried with SPEI 
over time, we observed different, and oftentimes counter-intuitive re-
lationships between weather and SWA during different drought events 
with similar severity and duration (Fig. 4). 

For example, in a representative site in northern Nevada, average 
monthly SPEI was − 0.38 during an extended arid period 1988–1994 
(lower left panels, Fig. 4. However, SWA was much lower across soil 
layers than a different drought period (1999–2005; right hashed-box) 
that had a more droughty mean SPEI of − 1.05 but with higher SWA 
across soil layers (lower right panels, Fig. 4). A key difference among the 
two time periods was in the seasonality of precipitation: winter pre-
cipitation was 5.96 cm above average for this site in the 1999–2005 
drought versus 27.83 cm below average for the 1988–1994 drought. 
Interestingly, the SPEI values in winter were only moderately different 
for drought periods, specifically winter SPEI was − 0.48 in the 1990 s 

drought having a severe shortfall of winter precipitation, compared to 
winter SPEI of − 0.24 for 1999–2005 drought in which winter precipi-
tation was above average. The differences in winter precipitation 
apparently led to 22% higher SWA estimates in the soil profile during 
the 1999–2005 compared to 1988–1994 drought, despite drastically 
different SPEI averages for the periods. 

3.3. Model performance and key variables 

Machine learning models explained 64% of the variance in monthly 
changes in SWA across soil depths at all 866 sites (Fig. 5). The models 
consistently selected SPEI as the most important variable to explaining 
SWA, and calendar month as the second most important variable 
(Fig. 5). Explained variance was greatest (up to 88%) for the soil depths 
of 0–5 cm and 70–110 cm. Explanatory power of the surrogate models 
was also high for intermediate depths (50–90 cm) but with SPEI being 
the most important predictor. Models of SWA variability for the 
remaining soil layers explained from 54% (20 cm depth) to 67% (130 +
cm depths) of variance. Shallow to medium depth soils (10–40 cm) were 
the least well estimated by the variables, with ≤ 62% of variance 
explained. Calendar time, represented by the month of each datum, was 
the most predictive variable for soil water from 10 to 40 cm depths. 

The importance of SPEI, precipitation, and pET to explaining SWA 
varied with the time frame over which they were calculated, specifically 
for surface SWA in spring and deeper SWA that is annually recharged by 
winter precipitation (Fig. 6). The models explained 31% more vari-
ability in deep moisture recharge compared to spring moisture of near- 
surface soils. Precipitation was consistently the most important variable 
explaining spring moisture variability near the soil surface, especially 
when summed over the 4–5 months prior to March/April. Conversely, 
pET, the second most predictive variable, was more important when 
considered over the months prior to spring. SPEI was the least predictive 

Fig. 3. Proportion of variation explained (r2) between (SWA) and standardized precipitation-evapotranspiration index (SPEI) over the period of 1979–2015 at three 
soil depth bins (top panels) and averaged across the bulk soil column (lower panel) for different time frames for SPEI calculation (number of months preceding the 
date that SWA was estimated. 
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of surface soil moisture in March/April regardless of computation 
length. For annual SWA recharge of deeper soil water, SPEI was 
consistently the most important predictor, especially at longer compu-
tation lengths (>8 months). Although summing precipitation over > 8 
months increased its importance, it explained less variability in deep soil 
water recharge than pET. 

4. Discussion 

Estimating the availability of moisture in the places (soil depths) and 
times (seasons) that plants need it is critical for advancing earth-systems 
science, planning land management practices, and understanding the 
impacts of drought on ecosystems. Here, we characterized the ability of 
SPEI, meteorological variables, and landscape characteristics, to 
recreate longer-term and periodic patterns of soil moisture dynamics 

(SWA) across a dryland region. Our results highlight abilities and limi-
tations of these predictors in recreating soil moisture dynamics and 
identify an important research need to develop more consistent methods 
to approximate soil moisture dynamics relevant to ecosystem func-
tioning and resource management (Brabec et al., 2015; Chaney et al., 
2017; Davidson et al., 2019). For example, annual recharge of deep soil 
moisture was recreated relatively well, with SPEI consistently emerging 
as the most important predictor (Fig. 6). Quantifying deep soil moisture 
recharge is important due to its impacts on watershed hydrology, forest 
growth and succession, annual forage productivity, and woody plant 
mortality (Allen et al., 2010; McDowell et al., 2013; Germino et al., 
2018). However, our models, and SPEI as a predictor, were more chal-
lenged to recreate the availability of surface moisture in spring, which 
plays a vital role in agricultural production, and ecosystem functioning 
such as the success of post-fire ecosystem restoration treatments in 

Fig. 4. Monthly time-series of standardized precipitation-evapotranspiration index (SPEI) and soil water availability (SWA), precipitation, and potential evapo-
transpiration (pET) across soil depths at an individual site in Northern Nevada USA. The top two panels are for the period 1979–2011, and lower three panels are for 
the period March 1988 through December 1994 (left column and left dashed box in top row) and September 1999 through April 2005 (right columns and right 
dashed box in top row) to show with better resolution the response of SWA to prolonged SPEI < 0. In the pET and Precip rows, the length of the line corresponds to 
the monthly anomaly for that estimate i.e. the line-end y-value with a circle represents monthly estimate and line end y-value without a circle represents average 
estimate for that month over the period of 1979–2015 (i.e. distance between the two is anomaly). Red lines and circles indicate a more arid month than normal 
(higher pET, lower precipitation). For the two SPEI rows, blue bars represent SPEI > 0 and red bars represent SPEI < 0. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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shrublands (Roundy et al., 2018; Shriver et al., 2018; Tian et al., 2018; 
O’Connor et al., 2020). Improved ability to model surface soil moisture 
would also benefit scientific and management efforts in other arid 

systems such as predicting forest productivity, seed survival, and bio-
crust dynamics (Pakeman et al., 2012; Belnap et al., 2013; Winchell 
et al., 2016; Roundy et al., 2018). 

Fig. 5. Ranking of predictor variable contribution to model accuracy in a machine learning framework developed to predict changes in soil water availability across 
soil depths. Predictor variables are ranked by relative contribution (1 = greatest, 0 = least) to model performance from most predictive on the left of the x-axis (red 
fill), to least predictive on the right (green and blue fill). Right-most column reports total model R2 for the soil depth layer. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Ranking of predictor variable importance changes with computation or sum length (left panels) for standardized precipitation-evapotranspiration (SPEI), 
potential evapotranspiration (pET), and precipitation (Precip), and by contribution to surface soil–water availability (SWA) in spring (top row) or contribution to 
annual recharge of deeper soil water availability (bottom row). Numbers within boxes in right panels indicates relative variable importance for machine learning 
models, and model R-squared from cross-validation. 
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Our findings compliment previous studies and fill knowledge gaps in 
terms of defining linkages between SPEI, meteorological metrics, and 
soil moisture dynamics. At the plot scale, SPEI has been shown to predict 
moisture trends in the top 1 m of soil using a quadratic function (Xingkai 
et al., 2016) and performed well to quantify agricultural drought im-
pacts on yields of winter wheat, corn, and cotton (Tian et al., 2018). 
Wang et al. (2015) reported that SPEI outperformed other drought 
indices in predicting changes in soil moisture, concluding SPEI’s mul-
tiscalar formulation allows for better representation of depth-resolved 
changes. Regional and continental scale studies in China using 
remotely sensed estimates of soil moisture show acceptable agreement 
with SPEI, but Scaini et al. (2015) found moisture in situ anomalies to 
exhibit higher correlations. Li et al. (2015) found SPEI to be approxi-
mately correlated with the Soil Moisture Condition Index (SMCI), but 
correlations decreased as longer computations lengths of SPEI were 
tested. Given that Li et al. (2015) focused only on the top 0–10 cm of soil 
moisture from Global Land Data Assimilation System Version 2.0 
(GLDAS-2), the decreasing correlations agree with our findings of 
shorter SPEI computation lengths better representing shallow soils and 
longer computation lengths representing deeper soils. 

We show strong spatial variability in continental-scale gradients in 
aridity and drought variability over the record length (Fig. 2). We also 
show relationships among drought trends, severity, and magnitude, 
suggesting that more drought-prone areas are not just increasing in 
aridity over time but are also prone to more and larger swings in aridity 
with implications for press- and pulse-drought dynamics (Hoover et al., 
2015; Hoover and Rogers, 2016; Slette et al., 2019). These findings 
provide important insight and identify areas and regions that are 
currently impacted by water scarcity and may be more vulnerable to 
future drying trends. While long-term trends in drought may have 
limited application to resource managers, those seeking guidance on 
immediate conservation treatments, it provides significant insight into 
the spatial heterogeneity in aridity even within areas and regions that 
are otherwise considered similarly in terms of drought vulnerability. The 
strong spatial variation in the magnitude, variability, and trend in SPEI 
in the western United States with key hotspots of drought severity need 
to be considered when developing long-term plans for resource man-
agement including ecosystems services and development of hydrological 
infrastructure. 

The strengths and weaknesses of SPEI as an indicator of soil moisture 
are accompanied by a tradeoff between the simplicity of meteorologi-
cally based drought indices, and the data needs and computational re-
quirements of process-based soil moisture models or soil-moisture based 
drought indices. Despite the more intensive requirements of process- 
based models, and that they may not capture plot-specific soil physics 
processes (e.g., desiccation cracks, preferential flow paths, macropores), 
our results suggest that they may outperform meteorological metrics for 
understanding ecologically relevant drought dynamics. We do, however, 
acknowledge the potential for errors in process-based modeling, espe-
cially when models are run with coarse resolution geospatial datasets 
such as soils or gridded weather data that may have spatial inaccuracies 
and biases that may go unnoticed without field validation. Although this 
approach is common in larger-scale studies using process-based models 
(e.g., Eum et al., 2014; Pelletier et al., 2016; Shriver et al., 2019), future 
studies would benefit from assessing these errors when modeling soil 
moisture dynamics. Meteorological metrics, on the other hand, such as 
SPEI may provide useful predictions of qualitative changes in hydrologic 
water balance in longer time frames and provide general drought as-
sessments of hydrological processes. Indeed, drought indices such as 
SPEI or the Palmer drought severity index (PDSI) are commonly lever-
aged for policy and management decisions, but the spatiotemporal 
limitations of their predictive ability need to be considered more criti-
cally when applied to smaller spatial scales (e.g., site, plot), shorter time 
periods (<1 year), or for modeling specific ecological outcomes. 

5. Conclusions 

In this study, we evaluated SPEI variability across CONUS, and 
assessed SPEI drought severity, meteorological conditions, and land-
scape characteristics as indicators of climatic water balance. We used a 
machine learning framework to model long term and periodic SWA 
dynamics across a broad range of dryland sites in the Great Basin, USA. 
SWA is an excellent metric to represent ecologically relevant soil 
moisture conditions in that it accounts for soil texture impacts on matric 
potential, is reported in mm, and thus normalizes moisture variability 
among sites with varying characteristics. Overall, long-term trends in 
SWA were modeled relatively well (up to 88% of variance explained, 
64% average across soil depths) and twelve-month SPEI consistently 
emerged as the most important variable for model accuracy. Similarly, 
we found annual recharge of deep soil moisture to model quite well (up 
to 80% of variance explained, 73% average across soil depths > 50 cm), 
with SPEI again emerging as a key variable for model accuracy. More-
over, longer computation length SPEI were better indicators of deep 
SWA recharge than shorter computation lengths. However, we found the 
availability of surface SWA in spring, which is important for seedling 
germination and establishment in sagebrush steppe, was not modeled as 
well (up to 63% of variance explained, 48% averaged across the top 20 
cm) and SPEI was consistently the least important parameters in these 
models. Instead, precipitation amounts from the previous 3–5 months 
were better predictors of SWA, suggesting a lagging influence of pET 
during the winter. While these results do show relatively positive out-
comes in terms of modeling long-term and periodic soil moisture dy-
namics, potential error of models when averaged across events and soil 
layers, may limit their applicability as indicators for planning tool 
development. Instead, a reliance on process-based models may be more 
appropriate when enhanced precision in soil moisture dynamics are 
needed. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

Funding was provided by US DOI Southwest Climate Adaptation 
Science Center (CASC), in addition to Northwest and North-Central 
CASCs, as well as Bureau of Land Management (BLM), U.S. Fish and 
Wildlife Service, U.S. Geological Survey, and the Great Basin Landscape 
Conservation Cooperative. The USGS/BLM SageSuccess project and 
team provided key data. Mike Wilkins provided comments. Any use of 
trade, product, or firm names is for descriptive purposes only and does 
not imply endorsement by the U.S. Government. 

References 

Abatzoglou, J.T., 2013. Development of gridded surface meteorological data for 
ecological applications and modelling. Int. J. Climatol. 33 (1), 121–131. 

Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., 
Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H., Gonzalez, P., Fensham, R., 
Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S.W., 
Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree 
mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259 
(4), 660–684. 

Babst, F., Bouriaud, O., Poulter, B., Trouet, V., Girardin, M.P., Frank, D.C., 2019. 
Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5 
(1) https://doi.org/10.1126/sciadv.aat4313. 

Barnard, D.M., Barnard, H.R., Molotch, N.P., 2017. Topoclimate effects on growing 
season length and montane conifer growth in complex terrain. Environ. Res. Lett. 12 
(6), 064003. https://doi.org/10.1088/1748-9326/aa6da8. 

Barnard, D.M., Germino, M.J., Pilliod, D.S., Arkle, R.S., Applestein, C., Davidson, B.E., 
Fisk, M.R., 2019. Cannot see the random forest for the decision trees: selecting 
predictive models for restoration ecology. Restor. Ecol. 27 (5), 1053–1063. 

Beguería, S., S. M. Vicente-Serrano, and M. S. Beguería. 2017. Package ‘spei’. 

D.M. Barnard et al.                                                                                                                                                                                                                            

http://refhub.elsevier.com/S1470-160X(21)01044-X/h0005
http://refhub.elsevier.com/S1470-160X(21)01044-X/h0005
http://refhub.elsevier.com/S1470-160X(21)01044-X/h0010
http://refhub.elsevier.com/S1470-160X(21)01044-X/h0010
http://refhub.elsevier.com/S1470-160X(21)01044-X/h0010
http://refhub.elsevier.com/S1470-160X(21)01044-X/h0010
http://refhub.elsevier.com/S1470-160X(21)01044-X/h0010
http://refhub.elsevier.com/S1470-160X(21)01044-X/h0010
https://doi.org/10.1126/sciadv.aat4313
https://doi.org/10.1088/1748-9326/aa6da8
http://refhub.elsevier.com/S1470-160X(21)01044-X/h0025
http://refhub.elsevier.com/S1470-160X(21)01044-X/h0025
http://refhub.elsevier.com/S1470-160X(21)01044-X/h0025


Ecological Indicators 133 (2021) 108379

8

Belnap, J., Wilcox, B.P., Van Scoyoc, M.W., Phillips, S.L., 2013. Successional stage of 
biological soil crusts: an accurate indicator of ecohydrological condition. 
Ecohydrology 6 (3), 474–482. 

Biederman, J.A., Scott, R.L., Arnone III, J.A., Jasoni, R.L., Litvak, M.E., Moreo, M.T., 
Papuga, S.A., Ponce-Campos, G.E., Schreiner-McGraw, A.P., Vivoni, E.R., 2018. 
Shrubland carbon sink depends upon winter water availability in the warm deserts of 
North America. Agric. For. Meteorol. 249, 407–419. 

Brabec, M.M., Germino, M.J., Shinneman, D.J., Pilliod, D.S., McIlroy, S.K., Arkle, R.S., 
2015. Challenges of establishing big sagebrush (Artemisia tridentata) in rangeland 
restoration: effects of herbicide, mowing, whole-community seeding, and sagebrush 
seed sources. Rangeland Ecol. Manage. 68 (5), 432–435. 

Bradford, J.B., Schlaepfer, D.R., Lauenroth, W.K., 2014a. Ecohydrology of adjacent 
sagebrush and lodgepole pine ecosystems: the consequences of climate change and 
disturbance. Ecosystems 17 (4), 590–605. 

Bradford, J.B., Schlaepfer, D.R., Lauenroth, W.K., Burke, I.C., Maestre, F., 2014b. Shifts 
in plant functional types have time-dependent and regionally variable impacts on 
dryland ecosystem water balance. J. Ecol. 102 (6), 1408–1418. 

Bradford, J.B., Schlaepfer, D.R., Lauenroth, W.K., Palmquist, K.A., 2020. Robust 
ecological drought projections for drylands in the 21st century. Glob. Change Biol. 
26 (7), 3906–3919. 

Chaney, L., Richardson, B.A., Germino, M.J., 2017. Climate drives adaptive genetic 
responses associated with survival in big sagebrush (Artemisia tridentata). Evol. 
Appl. 10 (4), 313–322. 

Davidson, B. E., M. J. Germino, B. Richardson, and D. M. Barnard. 2019. Landscape and 
organismal factors affecting sagebrush-seedling transplant survival after megafire 
restoration. Restoration Ecol. In press. 

DiCristina, K., Germino, M., 2006. Correlation of neighborhood relationships, carbon 
assimilation, and water status of sagebrush seedlings establishing after fire. Western 
North American Naturalist 66 (4), 441–449. 

Eum, H.I., Dibike, Y., Prowse, T., Bonsal, B., 2014. Inter-comparison of high-resolution 
gridded climate data sets and their implication on hydrological model simulation 
over the Athabasca Watershed, Canada. Hydrol. Process. 28, 4250–4271. 

Feilhauer, H., Schmid, T., Faude, U., Sánchez-Carrillo, S., Cirujano, S., 2018. Are 
remotely sensed traits suitable for ecological analysis? A case study of long-term 
drought effects on leaf mass per area of wetland vegetation. Ecol. Ind. 88, 232–240. 

Germino, M.J., Barnard, D.M., Davidson, B.E., Arkle, R.S., Pilliod, D.S., Fisk, M.R., 
Applestein, C., 2018. Thresholds and hotspots for shrub restoration following a 
heterogeneous megafire. Landscape Ecol. 33 (7), 1177–1194. 

Germino, M.J., Reinhardt, K., 2014. Desert shrub responses to experimental modification 
of precipitation seasonality and soil depth: relationship to the two-layer hypothesis 
and ecohydrological niche. J. Ecol. 102 (4), 989–997. 

Herrick, J.E., Van Zee, J.W., Havstad, K.M., Burkett, L.M., Whitford, W.G. 2005. 
Monitoring manual for grassland, shrubland and savanna ecosystems. Volume I: 
quick start. Volume II: design, supplementary methods and interpretation. 
Monitoring manual for grassland, shrubland and savanna ecosystems. Volume I: 
Quick Start. Volume II: Design, supplementary methods and interpretation. 

Homer, C., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N., 
Wickham, J., Megown, K., 2015. Completion of the 2011 National Land Cover 
Database for the conterminous United States–representing a decade of land cover 
change information. Photogramm. Eng. Remote Sens. 81, 345–354. 

Hoover, D.L., Knapp, A.K., Smith, M.D., 2017. Photosynthetic responses of a dominant C 
4 grass to an experimental heat wave are mediated by soil moisture. Oecologia 183 
(1), 303–313. 

Hoover, D.L., Duniway, M.C., Belnap, J., 2015. Pulse-drought atop press-drought: 
unexpected plant responses and implications for dryland ecosystems. Oecologia 179 
(4), 1211–1221. 

Hoover, D.L., Rogers, B.M., 2016. Not all droughts are created equal: the impacts of 
interannual drought pattern and magnitude on grassland carbon cycling. Glob. 
Change Biol. 22 (5), 1809–1820. 

Huang, Z., Liu, Y., Tian, F.-P., Wu, G.-L., 2020. Soil water availability threshold indicator 
was determined by using plant physiological responses under drought conditions. 
Ecol. Ind. 118, 106740. https://doi.org/10.1016/j.ecolind.2020.106740. 

James, J.J., Sheley, R.L., Leger, E.A., Adler, P.B., Hardegree, S.P., Gornish, E.S., 
Rinella, M.J., Wainwright, C., 2019. Increased soil temperature and decreased 
precipitation during early life stages constrain grass seedling recruitment in cold 
desert restoration. J. Appl. Ecol. 56 (12), 2609–2619. 

Kemp, K.B., Blades, J.J., Klos, P.Z., Hall, T.E., Force, J.E., Morgan, P., Tinkham, W.T.. 
2015. Managing for climate change on federal lands of the western United States: 
perceived usefulness of climate science, effectiveness of adaptation strategies, and 
barriers to implementation. Ecol. Soc. 20. 

Knowles, J.F., Scott, R.L., Minor, R.L., Barron-Gafford, G.A., 2020. Ecosystem carbon and 
water cycling from a sky island montane forest. Agric. For. Meteorol. 281, 107835. 
https://doi.org/10.1016/j.agrformet.2019.107835. 

Li, X., He, B., Quan, X., Liao, Z., Bai, X., 2015. Use of the standardized precipitation 
evapotranspiration index (SPEI) to characterize the drying trend in southwest China 
from 1982–2012. Remote Sens. 7 (8), 10917–10937. 

McDowell, N.G., Beerling, D.J., Breshears, D.D., Fisher, R.A., Raffa, K.F., Stitt, M., 2011. 
The interdependence of mechanisms underlying climate-driven vegetation mortality. 
Trends Ecol. Evol. 26 (10), 523–532. 

McDowell, N.G., Fisher, R.A., Xu, C., Domec, J.C., Hölttä, T., Mackay, D.S., Sperry, J.S., 
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